
The Graph:
A Decentralized Query Protocol for Blockchains

Yaniv Tal, Brandon Ramirez, Jannis Pohlmann

March 21, 2018

Version 0.2

Abstract

We introduce The Graph, a Decentralized Query Protocol for indexing and caching data from
blockchains and storage networks. We describe the query interface, the topology of the
P2P network, and the economic incentives and mechanisms designed to keep the network
running as a public utility.

1 Introduction

1.1 Motivation

A large amount of data resides in silos that are centrally controlled by a handful of corporations.
Web-era apps like Google, Facebook, YouTube, LinkedIn, and Salesforce are built on these data
monopolies. This centralization puts tremendous power into the hands of a few and reduces
economic opportunity and self-determination for many.

Decentralized Applications (dApps) put users in control of their data. dApps are built using data
that is either owned and managed by the community or is private and controlled by the user.
This way many products and services can be built on pluggable datasets and users can freely
switch between dApps. We believe that this will create wide-scale economic opportunity as
more products are able to compete in a fair and open market and mechanisms are put in place
to incentivize people to contribute to a larger and farther-reaching public commons.

To make this vision a reality, there needs to be an interoperability layer for dApps. Applications
building in the same domain need a way to coordinate and agree on standardized names. They
also need a common way to query data. Applications use queries to find data in larger datasets.
Queries generally include operations like filtering, pagination, sorting, grouping, and joining
result sets. Executing queries requires creating and maintaining indexes, without which running

1



the queries would be prohibitively slow. All of this requires economic incentives to produce a
flourishing ecosystem. The Graph provides this infrastructure layer for Web3, an emerging web
application stack.

Figure 1: The Web3 Application Stack.

An established decentralized Query Execution Layer shown in Figure 1 does not currently exist.
Without a decentralized Query Execution Layer for Web3, dApp developers must resort to build-
ing custom indexing servers on an ad-hoc basis. This introduces a centralized component and
requires engineering and devops resources to build and maintain. Providing a decentralized
Query Execution Layer would allow dApp developers to ship more reliable dApps faster with
fewer resources. It would also enable dApps to become fully decentralized.

1.2 Decentralized Query Protocol

Definition

A Decentralized Query Protocol is defined to be a collection of rules by which clients pay a de-
centralized network of nodes for indexing, caching, and querying data that is stored on public
blockchains and decentralized storage networks such as IPFS/Swarm.

2



Protocol Requirements

In order to enable a new class of data-intensive dApps, a Decentralized Query Protocol must
meet the following requirements:

1. Trust without verification—a client should be able to trust the results of queries without
independently verifying each query or loading the underlying raw data.

2. Metering—a client should be able to efficiently pay for each query processed by the net-
work, with minimal counterparty risk for either the client or the nodes.

3. Predictable performance—the client should be able to pay for predictable performance for
queries that are run against specific data sources.

4. Data availability—a client should be able to pay to keep the data available for running
queries against specific data sources.

5. Price efficiency—clients should be able to pay for queries, performance, and data availabil-
ity in efficient and competitive marketplaces.

6. Incentive alignment—incentives should be aligned between clients, nodes, and dApp de-
velopers to encourage growth of the network and positive network effects.

2 Design

The Graph implements a Decentralized Query Protocol, which enables users to query a network
for data without having to operate any centralized infrastructure for indexing and caching.
The protocol synthesizes ideas from distributed computing and cryptoeconomics1 to produce a
network that is self-organizing, robust, and secure.

2.1 System Overview

Protocol Stack

The Graph can be divided into a stack of sub-protocols which can be treated conceptually as
distinct interoperable layers, as shown in Figure 2.

1Vitalik Buterin, “Introduction to Cryptoeconomics,” Vitalik Buterin’s Website, March 12, 2018,
https://vitalik.ca/files/intro cryptoeconomics.pdf

3



Figure 2: The Protocol Stack has the following sub-protocols:

1. Consensus Layer—responsible for smart contract execution and payment settlement.

2. Peer-to-peer (P2P) Network—defines how nodes locate and connect to each other.

3. Storage Layer—data stored on public blockchains or content addressable networks.

4. Query Processing—how a query is routed to a specific node for processing.

5. Payment Channels—facilitates fast and low-cost payments in the system.

6. Governance—manages schemas, data sources, and disputes.

7. Query Marketplace—mechanism by which users pay nodes for specific queries.

8. Indexing and Caching Marketplace—mechanism by which users pay nodes for indexing
and caching data sources.

Token

The Graph introduces a new token, Graph Tokens, which play a vital role in securing and gov-
erning the network. Each of the uses for the token will be described alongside their respective
related sub-protocols and summarized in the Token Economics section of this document.

Query Language

The Graph will support queries written in GraphQL, a query language invented and open-
sourced by Facebook. While SQL might be more familiar to back-end engineers, it is not

4



well-suited to running queries from front-end applications. Traditional web apps handle this
impedance mismatch by writing centralized API servers and data access layers in front of SQL
databases, which are then exposed as REST endpoints. Since a requirement of dApps is that
they require no centralized infrastructure to function, it is important that dApp clients can query
data directly from the front-end in a flexible way. GraphQL was designed to meet this criteria
and has since seen accelerating adoption in the web and mobile communities.

Data Model

All queries in The Graph are executed against a particular Data Source. A Data Source is com-
posed of a Schema and one or more Datasets.

The Schema is a GraphQL SDL schema, and defines the entities, values, types, and relationships
which may be queried. Unlike in traditional databases, the Schema here is purely a logical
definition, and doesn’t dictate the structure of the data at the storage layer.

The Dataset defines data which exists on public blockchains or on decentralized storage net-
works that may be queried as part of a particular Data Source. It is composed of Data, Mappings,
and an optional Update Function.

Data identifies the raw data in the decentralized storage layer. It contains an identifier for the
storage system being used, and the location of the raw data in that storage system. The location
format will vary by storage system, for example a content hash on The InterPlanetary File System
(IPFS) but a contract address on Ethereum.

The Mappings define how the Data maps to a particular Schema. It also includes metadata
around the format in which the data is stored, such as CSV, Parquet, or a custom binary format.

The Update Function is an optional script that can be provided for mutable data such as Ethereum
contract data. It can also be provided for content-addressed data, which is referenced through
a naming service such as IPNS rather than its content hash, which is immutable. The function
accepts the data as input and returns an Update Event which consists of a CUD (Create, Update,
Delete) Operation and a Payload. The Update Event allows for performantly updating indexes
without having to fully reindex the underlying Data.

Network Participants

There are several types of participants in the network which are defined by their functional role
in the protocol. With the exception of the dApp client, which is external to the protocol, a single
node implementation may fulfill multiple functional roles.

1. dApp Client—a front-end application running on the End User’s machine which queries
The Graph.

5



2. Gateway Node—a node which acts as an HTTP, WebSocket, or JSON RPC endpoint for
dApp clients to query The Graph.

3. P2P Node—a node which participates in the P2P network.

4. Query Node—a node which participates in query processing.

Economic Agents

There are several types of economic agents which we define by the common set of incentives
that govern their usage of the protocol.

1. End User—seeks to get utility from an application and pays to use the network.

2. dApp Developer—seeks to monetize their work building a decentralized application for the
End User.

3. Node Operator—operates P2P Nodes and Query Nodes to extract fees and drive up the
value of existing token holdings.

4. Data Source Curator—creates and curates Data Sources in The Graph to extract interest
and drive up the value of existing token holdings.

5. Validator—validates query responses in exchange for interest and driving up the value of
existing token holdings.

2.2 Sub-Protocols

Consensus Layer

The Graph has several components which require a blockchain-based consensus layer to provide
guarantees that mechanisms in the protocol (payments, voting, validation, etc.) are immutable,
irreversible, and can be carried out without the help of a central governing authority. We will
use an existing blockchain such as Ethereum for this purpose.

Storage Integration Layer

The Graph can support a variety of storage backends using Storage Adapters, an idea inspired
by IPLD2. These may include Ethereum, IPFS, other blockchains, or other forms of decentralized
storage.

2“IPLD/specs,” GitHub, accessed March 5, 2018. https://github.com/ipld/specs/tree/master/ipld.

6



P2P Network

The Graph implements a structured overlay network which builds on ideas from Content-Addressable
Networks (CANs) such as IPFS3 and BitTorrent4. We introduce the concept of a Service-Addressable
Network to describe our formulation; the key difference is that while CANs leverage distributed
hash tables (DHTs) to locate nodes on the network storing a specific file or object5, our P2P net-
work is used to locate nodes capable of providing a particular service, which can be any arbitrary
computational work. The design of our P2P network sub-protocol is modular with respect to the
service being provided, a fact which we take advantage of in other parts of the protocol stack.

Figure 3: Service-Addressable Network

3Juan Benet, “IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3),” IPFS, March 5, 2018,
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf

4Andrew Lowenstern and Arvid Norberg, “DHT Protocol,” BitTorrent.org, May 1, 2017,
http://www.bittorrent.org/beps/bep 0005.html

5Sylvia Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content-Addressable Network,”
Proceedings of ACM SIGCOMM, August 2001, http://dx.doi.org/10.1145/383059.383072.

7



Query Processing

The Query Processing is split into five distinct stages: Query Splitting, Service Discovery, Query
Routing, Nested Query Processing and Response Collation.

Query Splitting

The first step of the Query Processing sub-protocol is to split a query into disjoint top-level Query
Fragments, which may correspond to multiple Data Sources. A Query Fragment is any part of
a query that can be resolved on its own. These fragments are processed separately, moving
through the subsequent Query Processing stages in parallel.

Service Discovery

In the Service Discovery stage, we leverage our Service-Addressable Network, to locate a P2P
Node, with a routing table corresponding to a specific Service Group, as shown in Figure 4.
In the context of this sub-protocol we define the Service Group to be a group of Query Nodes
capable of processing a query for a specific Data Source.

Figure 4: The Service Discovery stage.

8



Query Routing

In the Query Routing stage, the Gateway Node that originated the query6 decides which Query
Node to forward a specific Query Fragment to, as shown in Figure 5. The Query Routing stage
uses the Service Group Routing Table, which contains the location of each Node in the Service
Group, as well as additional metadata.

Figure 5: The Query Routing stage.

The metadata in the Service Group Routing Table is extensible to support modular routing logic.
We take advantage of this in the Query Marketplace sub-protocol, but it could also be used to
support operating the protocol in local networks or with trusted nodes, where payment require-
ments may be undesirable.

Nested Query Processing

Each Query Fragment corresponds to a single entity type that is indexed by The Graph. If
the user wishes to traverse nested entity relationships, these are processed as separate Query
Fragments which go through the steps listed above. Queries may be arbitrarily deep, and thus
are processed recursively, in serial until all the Query Fragments are processed.

6From the perspective of the network, it is impossible to distinguish whether a Gateway Node originated a query
itself, or on behalf of a dApp client.

9



Response Collation

The final stage is to await execution of all the Query Fragments, both in series and in parallel,
and to collate the responses in a format that meets the GraphQL specification7 for the given
query.

Payment Channels

In order to keep throughput high and transaction cost low, the network will use Payment Chan-
nels for microtransactions8. Payment Channels may be opened directly between two nodes, but
for the flexibility of the protocol, it is appropriate to use a network of Payment Channels such as
Raiden9, which allows for payments to be made between many-to-many nodes without having
to settle on-chain for each new node-to-node transaction. In this way, a single Payment Channel
could be opened once by an End User to support many microtransactions for metered usage of
The Graph. The Payment Channels could then be settled on-chain on a desired cadence.

Governance

Since The Graph provides the main API endpoint for dApps to query data, deciding what data
to include in query results impacts users and developers. The Graph provides a way for the
community to vote and decide on what data to include and exclude. For example there may be
competing protocols for any given domain. The network could choose to include data from one
protocol or multiple.

To start using The Graph, a dApp developer needs to make sure that a Schema exists for their
domain. A Schema is composed of namespaces, entities, fields, and relationships between enti-
ties. If entities or fields are missing from the global Schema, a developer can propose changes
by staking tokens. Schema changes can only be accretive and cannot include breaking changes
to ensure that deployed dApps do not break.

Once a Schema exists for a domain, a dApp developer can propose to include a new Data Source
for an entity by staking tokens. Other developers working in the same domain will want to check
to make sure that the Data Source is high quality and compatible since new Data Sources would
have an impact on their dApps. If quality Data Sources are added, their dApps will work better
and their users will be happy. If the new Data Source produces spam or low quality content,
developers will have an incentive to reject it. Participation in the governance process through
staking will be rewarded with token inflation based on how much value the Data Sources drive
to the network.

7http://facebook.github.io/graphql/draft/
8https://lightning.network/lightning-network-paper.pdf
9https://raiden.network/

10



Query Marketplace

The Query Marketplace lets End Users pay Query Nodes for individual queries (or Query Frag-
ments) issued against a specific Data Source. The Query Marketplace builds on top of the
extensible P2P Network and Query Routing sub-protocols. We leverage the extensible Service
Group Routing Table metadata to list a Price Sheet which Query Nodes may use to advertise the
fees they will charge to process queries for a specific Data Source. The fees will be priced in
terms of estimated complexity of the query, size of the query response, and latency. We route
the query to a specific Query Node to achieve the desired tradeoff of cost and performance for
any given query. The Gateway Node may optionally expose this logic in its query interface such
that dApp developers or End Users may specify the optimal cost versus performance tradeoff for
their specific use case.

Query Nodes must bond a desired number of Graph Tokens in order to participate in the market-
place. The more tokens they bond, the more likely they are to be seen as trustworthy by users
of the network and be able to extract fees for queries. While most transactions of payment for
query processing will occur off-chain, an End User or Gateway Node may challenge any specific
query response by creating a Dispute on-chain, which is a voting smart contract in which a set
of Validators votes on the correctness of a query response in a commit and reveal process. If the
challenge succeeds, then the Query Node’s bonded tokens are forfeited to the challenger who
created the Dispute. Validator Nodes are rewarded for securing the marketplace through token
inflation.

Indexing and Caching Marketplace

While the Query Marketplace incentivizes Query Nodes to respond to individual queries, it does
not provide any guarantees that there are Query Nodes which are available to process the query
performantly. This can be problematic, especially when bootstrapping a new Data Source which
does not yet have usage. The Indexing and Caching marketplace allows Query Nodes to be
compensated for providing a specific Service-level Agreement (SLA) which is a promise to be
available to process queries for a specific Data Source within certain latency and cost bounds. If
a Query Node is found to be in violation of the SLA then its staked tokens will be forfeited to the
user who paid for the SLA. The network may implement a challenge-response protocol to verify
that an SLA is being met even when users are not actively querying that Data Source.

3 Token Economics

Graph Tokens are used to secure and govern the network and to incentivize behaviors that are
critical for the network to thrive. Token mechanics are described in relevant sections of the
protocol, but we provide here a consolidated list of the mechanisms that involve tokens, and
how specific economic agents interact with the tokens. Graph Tokens:

11



• Are bonded by Query Nodes to participate in the Query Marketplace as well as the Indexing
and Caching Marketplace.

• Are bonded by Validators to participate in voting in on-chain Disputes.

• Are staked by Challengers to create a Dispute.

• Are paid to Validators through token inflation.

• Are paid to Data Source curators through token inflation.

• Are used in decentralized governance mechanisms for a specific Data Source (i.e. Token
Curated Registries).

• May be used as fees in the Query Marketplace as well as the Indexing and Caching Mar-
ketplace

4 Roadmap

Our plan is to release The Graph across three major development milestones. The first release
will be a free service that any dApp developer can register to use. It will include stable interfaces
for defining the Schema, registering Mappings, and querying with GraphQL. This release is
slated for Q3 2018. Launching first as a centralized service will allow us to iterate on the
design, implementation, and economic incentives at a faster rate. The second milestone will
be the launch of the full P2P network in 2019. After this release, anyone will be able to run a
Graph Node and earn Graph Tokens for participating in the network. This is the stage at which
the Query Marketplace as well as the Indexing and Caching Marketplace will be opened. The
third major release will include support for Private Data. Private Data is anchored on-chain but
encrypted and controlled by users. This release is scheduled for 2020.

5 Conclusion

In this paper we presented the requirements for a Decentralized Query Protocol, a set of rules
by which clients pay a decentralized network of nodes for indexing, caching, and querying
data that is stored on public blockchains and decentralized storage networks. We provided
a high-level overview of The Graph, our formulation of a Decentralized Query Protocol. We
also proposed our definition for what constitutes a dApp—a dApp must put users in control of
their data. dApps are built using data that is either owned and managed by the community
or is private and controlled by the user. This way many products and services can be built on
interchangeable Datasets and users can freely switch between dApps. The Graph acts as an
interoperability layer that will enable these flourishing ecosystems of interoperable dApps to
thrive and replace centrally controlled data monopolies.

12


	Introduction
	Motivation
	Decentralized Query Protocol

	Design
	System Overview
	Sub-Protocols

	Token Economics
	Roadmap
	Conclusion

